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A  ht7nci - In xnodcllixlg  ~nicrolnac)linccl defornlable  m i r r o r s  w i t h  e l e c t r o s t a t i c  a c t u a t o r s
whose gap spacings arc of the same order of magnitude as that of the surface dcformatioxls, it is
ncccssrrry to usc uonlincar  modc]s for the actuators. In this paper, wc collsidcr micromachil~cd
deformable mirrors modcllcd by a membrane or plate cquaticm with x]olllincar electrostatic ac-
tuator characteristics. Nu]ncr-ical lnct]lods for computing the mirror deformation duc to .giwnl
actuator voltages, and the actuator voltages rc. quired  for producing the desired deformations
at tllc actuator  locations arc  prcscntcd. lhc ap~)lication of the ~)ro~)oscd  mct]lods to circular
dcformabk  mirrors W11OSC  surfaces are modellcd l)y elastic membranes is discussed in detail.
Numerical results are obtained for a ty~)ical  circular micromachined  mirror with electrostatic
act uators.

1. lntloduction
DEII’OIIMA 13LE lnirrors  with electrostatic actuators have been
systems [I], [2] and spaceborne antennas [3]. in 1977, Grosso a~id

widely used in various adaptive optical
Yellin  [4] developed a mcrnbrane mirror

whose deformations were controlled by means of discrete electrostatic actuators. subsequently, various
for~ns of deformable mirrors with electrostatic actuators have t)ccn developed [5]-(8]. l’he advent of silicon
VJ,SI  technology has made possjb]c the integration of deformable mirrors with microelectronic circuitry.
III 1983, }~ornbeck  [9] perfected a 51prn square deformable mirror with pixelated mirror elements. l’hc
]Ilirror clcformations  were col)trolled by electrostatic actuators driven by microelectronic circuits which are
int.cgrated  with the mirror ascmbly. his mirror was used primarily as a light modulator. ‘1’}lerefore it
was  unnecessary to control the mirror shape precisely. ‘l’he present. work is motivated by the recent effort
in exploiting micrornachining technology to develop small defor~nable mirrors wit}l pixclated electrostatic
actuators for controlling the mirror shape precisely [10]-[1 3]. These mirrors have potential applications iti
adaptive optical systems for interferorrrctcrs and large-aperture telescopes, and miniature iroaging  dcviccs.

l’rcvious analytical studies [I], [4] of large dcformab]c  mirrors with clect,rostatic actuators do not include
tllc effect of mirror dcforlnation on  the actuator gap spacitlg, In nricro[[iachined  deforlnable mirrors  with
e l e c t r o s t a t i c  a c t u a t o r s ,  i t  i s  d e s i r a b l e  t o  s e t  the gap spacing as small as possible so as to I[lirlin]ize  t h e
operatiI!g voltage ]cvci.  Consequently, the mirror surface dCfOrlIlatiOllS  are of the same order of magnitude
as that of the gap spacing. Thus, it is ])ccessary to use  nonlinear actuator lllodc]s. Recexlt]y,  Cai et al [14], altd
Gilbert ei al[15] developed  cornprrtational algorithms based 011 finite-cle,ncr,t r,,cthod and iterative schemes
which could be used for the nutoerical solution of notllinear tnodels of microelectron] echa~~ical  s t ructures
SUCIA as the dcforl~lablc  nlirrors Under  Corlsideration Ilere, wc make USC of tile Contractiorl lr~a~)~)ing ]r[cthc)d
for the dctcr~nining the mirror deforlnation doe to spccifred actuator voltages, a~id also propose a mcthc,d
for solving the i~lvcrse  prob]c!n of detcrrninil]g  the required actuator voltages to achieve a desired rrlirror
deformation.

We begin with the dc.velopmcnt of ~nathematical lnodels in the forrl~ of nonlinear partial differential
cqurrtions describitlg the nlirror surface deformations. “1’hell algorithms for computing the mirror deformatic)n
corresponding to specified actuator voltages, and for colnputi~lg t}le required actuator voltages to produce a
given set of mirror deformations at the actuator locatic)ns, are proposed. ‘l’he application of these algorithms
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to circular deformable mirrors WIIOSC surfaces arc modcllcd by elastic mc~nbrancs is discussed in detail. “l’he
Iml)cr  concluctcs  with numerical results for a typical micrornachincd  Inirror with electrostatic actuators.

11. Mathcmatica] Models for Deformable Mirrors
Figure 1 SIIOWS a sketch of a circular ~nicrorllachincd  dcfornlahlc-r[lirror forrncd  by a thin elastic surface

(cg. silicon nitride) coated with a t}liu electrically conducting filTn. ‘1’IIc electrostatic actuators correspond
to clcctrodcs deposited 011 a ground plane over which the lnirror is attached. A voltage is applied bctwccrr
an clcctrodc and the mirror surface so that the actuator is rcspousiblc for pulling on a small portion of the
surface. ‘1’hc desired mirror deformation is achicvcd by apI)lying suitable voltages bctwccn the clcctrodcs
and the mirror surface. “I%c fabrication of such ~nirrors  is dcscribcd in [1 1].

I.et Q bc an open conncctcd subset of the Ihrclidcan plane R2 with a piccewisc smooth  boundary  8!2
rcl)rcscutirlg the spatial donlaill  of the nlirror. For a rcctangu]ar  mirror ,  Q is spccificd by QJ1 = {(z1, x2) c

li2  :[ Z1 1< ?], I X2 1< /2}, wbcrc t h e  tjs a r e  spccificd l e n g t h s .  F o r  a  c i r c u l a r  lrlirror, Q is spccifred  b y
a disk Qc = {(r, O), O < r < ro, O < 0 ~ 27r}. Consider a mirror with P actuators. Each actuator
electrode is specified by a patch Qj (a spcciflcd ol]cn  conncctcd subset of Q),  whose location is represented
by Xj :-- (Zjl , Zj2) (an interior point Of Llj), j = 1 ,. ... 1’. Figure 2 SI)OWS typical actuator electrode patches
for rectangular and circular mirrors.

Assuming that the elastic surface dcformatiou is in the linear rcgilnc,  the
normal to the uudcforrncd mirror surface at a point x E Q can bc dcscribcd by
of the form:

( A u ) ( x )  = - f,

downward displaccxnent  u(x)
a partial differential equation

(1)

wllcrc j is t,hc surface force density whose explicit for~rl will be derived later, and .4 is a lirlcar par t ia l
difl’crcntia]  operator.

When the thickness-diameter ratio of the mirror surface is small (typically << 10 - -2) suclL that the
bc~lding  energy is negligible cornparcd to that duc to tensile stresses, the mirror surface [[lay be regarded
as &lL elastic rncmbranc. l,ct Oij (x), i, j = 1, 2, dcrlotc the corll~)orlcnts  of tllc syrnnletric stress ter]sor  in &he
mirror surface at x satisfying the positivii,y condition

for all ~ u ({1, <2) E R2 and x E fl, w h e r e  c1 and C 2 a rc  known  p o s i t i v e  corlstants, and II . II d e n o t e s  t h e
l’}uc.lidean uor)n. ~’hen  the operator A has the form:

2-. r?
(AU.)(X) ‘- f-’> - L7ij(X)~~, (X).

i=<j=l ‘“ J

(3)

IU the  specia l  Ca.SC  wi th  uniforrrl t e n s i o n  7’, w c  h a v e  aij =- 7’6ij , wlicre 6ij derlotcs t}lc Kronccker  d e l t a .
Asslrlning  that the mirror is c]aTnped  to its boundary dfl, u n~ust satisfy the boundary condition:

u(x) :. 0 for x E r?fl. (4)

Wlicn the thickness-diameter ratio of the mirror surface is large such that the bcndiug cncr,gy  is not negligible,
oric rllay  rllodel the mirror surface by a plate. For  the CLLSC with uniform thickucss h,

( A u ) ( x )  = - l) (;:,;  -I 2&’;,; +- ;;-) (x), (5)

wl]crc J) is the flexural rigidity of tllc mirror surface given try L’}L3/{12(] - V2)} with P; being the Youtlg’s
lnodulus, and v the }’oisson]s  ratio. Assurnirlg clatrlJ)cd  edge, t})e boundary conditions are given by

u(x) =. O and (r3u/8xt) = O at df), (5)
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wl[crc (r9u/r911) denotes the outward normal derivative of u at 8Q.
‘lio derive an explicit cxprcssioll  for the surface force density j, we first consider the electrostatic force

dcllsity over a patch Qj due to a specified static voltage V j applied to the j-th actuator. I,ct do denote the
distance hctwccn the undeformed flat mirror surface and tllc bottom plane. U~ldcr the assrrr]lption that the
lllinin~al  width ~j of the patch flj is large compared to do ( typica l ly ,  Pj /do z 10), thc clcctrostat]c force
dcllsity duc to the j-tll actuator can bc dcscribcd approximately by

t ,J Vjp
j,(x) = — - - - - - -  ~. ( x )

2(do - U(X))2 J
for all x < Q, (7)

wllcrc CO is the pcrmittivity of free space; and @j may be taken as the characteristic functiorl of ~j (i.e.,

@j (x) G I if x E ~j; #j (X) = O if x E ~ – ~j ), or a weighting function wliich  models the spatial variation of
j. duc to tlic fringing electric field near the boundary of L? j. Assuming that the spatial variation of u over
Qj isslnall, wcmayrcplace u(x) byawcighted  averageofu  o v e r  Qj dcfi~lcd b y

(8)

wllcrc wj is a suitable spatial weighting function. In the special case where Wj(X) =: 6(X - xj ) is the IJirac

delta function, iij reduces to ~(xj), where U(xj) specifies the location of the j-th actuator.
Substituting the modified (7) into (1) leads to a nonlinear partial differential equation given by

(9)

defined on Q, where A is defined by (3) for a mcnlbrane, slid by (5) for a plate.
When the mirror deformations over Qj are small compared to do so that do – u, H do, then  (9)  becomes

lillcar. l’his approximation is poor when it, is applied to Inicrornachincd  mirrors whose defortnations arc of
the same order of magnitude as that of do. Therefore we shall consider only the nonlinear model (9) in the
subsequent development.

J,et V denote the actuator voltage vector ( Vl, . . . . Vp)T,  and V2 = (V/,. . . . V~)T,  where (.)T’ denotes
transposition. I,ct u =: (til, . . . . iip)T.  ‘1’he  relation bctwccn u and V2 can be expressed in the form

P
U(X) ‘ - ~D(X, ifj)Vj2, (lo)

j=l

where p(x, tij) c o r r e s p o n d s  t o  t h e  m i r r o r  defor~llatior]  at ally p o i n t  x E Q due to unit v o l t a g e  a p p l i e d  t o

the j-t}] actuator with specified actuator gap (d. – tij). Explicit expressions for p can be fourld  for special
ac tuator  e lec t rode  shapes  by solvirlg  (9) directly by corwidering rij as a knowu  quantity. For  an arbitrary
actuator clcctrodc s})ape,  p can be expressed in terms of the C~rccn’s function K = K(x, x’) mated wiLh
tllc boundary-value problcrn [16]:

(Au)(x) = 6(X - X’), x,x) < L?l (11)

with appropriate boundary collditions, where J is the J)irac delta function, Here, the boundary-value problem
for (9) can bc reformulated as an integral equation for the mirror deforrrlation u correspondir]g  to given static
actuator voltages Vj , j’ =. 1, . . . P:

(12)

where

co

-- J l{(x, y.’)~j(x’)dx’. (13)f)(x, Uj) ‘“ j(dO  ~- U j )2  12
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F;clrration (12) is valid provided that O~ u(x) <d. fc,r all XCQ.

h’lultiplying both sidcsof (12) by u~j(x),  and avcragiilg  thcrcsulting  equation over Qj lead toasct of
1’ ilnlJlic.it  nonlinear algebraic cquationsrclatingu  and V2. ‘1’hcy cali  bc writ,tcn in thcforln

u:. /Vv2(u)4%(u)v? (14)

wllcrc I’(u) is a P x I) matrix wl)osc  (i, ~”)-th clcrncllt cor responds  to  w,: 1 ~cl U~i(x)~~(x,  tij)df2i.

111. Co]nputational l’roblc]ns
Wcsllall corlsidcr two  basic colr]~Jutatio~lal  l~roblcI~ls msociated witlltllc dcfor~l~able  r~lirror.  gbsimplify

tllc subscqucllt dcvcloprncnt,  on]y the CZLSC wbcre tij = u(xj), j =. l , . . . lP ,  wi l l  bc d i s c u s s e d .

A. h!zl~or Ilejorntatioll  Corresponding to Speci~ed  Aciuafor  Voltages
IIcrc, wc are given actuator voltages V == (VI, ..., Vp)q’. It is required to determine the corresponding

IIlirror dcforlnation u = U( X ), X g $2. We observe from (12) that o~lce the mirror deformation at all the
actuator points are known, the solution to the bourldary-value problem for (9) at any point in Q can be
dctcrnliucd  exacfly. l’bus, the computational problcm can be decomposed into two basic steps:

Step (i): Determine the mirror displacement u = (u(xl ) ,,. ... u(xp))~’ at the actuator locations, This
involves determining the fixed points of the mapping NV>.

Sicp (ii): Substitute the u obtained from Step (i) into (12) and compute the mirror deformation u = II(X)
for ally  u < Q.

in view of the form of (14), it is natural to use the contraction-nlapping  method [17] to determine
u in Step (i). Onc ~nay also usc other methods suc}i as Newton’s  n]cthod  for solving (14). llc?,vcver,  tile
co]ltraction-rnapping algorithm has the sirnplcst form, and it converges to a fixed poirlt of Nvz corresponding
to a statically stable mirror dcfor]nation.

I,ct Z.J bc a closed bounded subset of the Rucliclcau  space RP, and  U“ c U bc an initial guess for the
fixed point of Nv,. “~hen the iterative algorithm is given by

(15)~,k+] ~, Nv2(uk),  k=-o,  l)2~. .’

I f  NV, i s  a  c o n t r a c t i o n  mappiug OIL // ( i . e . ,  tbcrc exists a cor,stant  a, i) < a < 1  sucil  t h a t  [1 NV,(U) -
Nvz(t]) II< cr II u --ii II for any u, G E U, where II {1 denotes the Euclidean norm for 1<1’),  then the scquencc
{Uk, k =- 0,1,2,. ..} converges to a unique fixed point of A(YZ in U. Moreover, the sequence satisdles the

&b?vLl?*

II Uk  -  Uk’ I\< [ok/(l -  a)]  II U“ -u’ 111 k,k’=.  o,l,2, . . . . (16)

“1’o apply the co~ltraction-rrlapping  ~nct}lod to our problcrrl, it is necessary to choose a suitable rlornain
U for the mapping Nv,. ‘J’bis domain must be sufficiently small such that it corltains  only onc fixed point
of Nv~. IIcrc, wclct Zl=: {U ER1> :0 <  ui  ~j,i= 1,, . . . P}, wlicrc  d is a constant such that O < d < do.
Next, wc shall derive a sufficient corldit~on  u~lder which NV, maps U into U (i.e. NV, dots not map poi~its
ill U to points outside U). Suppose that

M ij ~
/

lf(xi, x’)#j(x’)dx’  >0 for  i,j c I , .  . . ) P . (1’7)
l-l

‘l’hcl~, frottl (12), wc have

where L> = ~]lax{lfij ; i, j =- 1, . . . . 1’}. l;vidcntly, if

4
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(19)COA? ~~ Vj

2 < 2(d0 – d)2d,
j = l

L]icn NV, maps u into 24. ‘1’o derive a sufficient condition for Nva to he a contraction ~napping  OIL U, consicler

1/
I ~(xi, ~(xj)) - ~~(xi, fi(xj))  1< ~ * ~f(xilx’)dj(x’)dx’ ~iO-:-~(xj))2  - ~~xJj)2 . (20)0

Since the real-valued function ~ defined by j(<) = 1 / ( dO --02 is strictly monotone iucrca$ing on t}lc irltcrval
[0, do [, it follows from the mcar,-valu e t}leorcln t}lat

I J(O ‘- f(?) Is ~’(<)  I ( ‘ t Is r(4 I ( - t 1= &j)3 I ( - t I (21)
o

for all (,~ E [0, ~[, << { s ~, where j’ = dJ/d(. lbo~n (17), (19) and (21), wc have

I  P(xi, u(xj)) - 
P(xi, ‘i(xj))  1< ~~”-~~~  I U(xj) ‘-  ~(xj) I (22)

0
Usi~lg (14),(22), and the Schwarz inequality [~7]j wc obtain the estimate

I ‘ ( x j )  -  ‘i(xj)J ~2)]1’2

c. Ai JF- . ~d-:-a; [1 u - u [Ill v’ [1.—

o
‘1’bus, under condition (19) and

(23)

..-

0< cl: ::-w~ II V2 11<1,
(d.  -- d)3

(24)

JVv~ is a contraction mapping on U. Conditions (19) aud (24)  are conservative since they are independent of
the sizes of the spatial do~nains  of the actuators. Sharper sufhcient conditions for corlt,raction CZMI be derived
for specific actuator clcctrodc patterrls. We observe that, for a nonzero  II V2 11, t}le constant Q defined in

(24) tends to infinity as ~ -+ do. ‘1’bus ,  ill order to satisfy a < 1, II V2 [1 must bc reduced accordirigly  as
d irlcrcascs towards d o . g’his  situation can bc explained by considering the simplest case with one actuator
located at xl. In this case, (14) reduces to a single algebraic equation in the following normalized form:

ti]/d. = J&(u1)%’12/(1 -- til/dO)2, (14’)

wllcre U] L U(xl), and R is a positive constant given by

(14”)

l~igurc  3 shows the graphs of Nv for various values of KV12 >0. ‘] ’heir  intcrscctiorls with t}te diagonal line
give the nor~na]ized  fixed points of Nv~. I~viderltlyj  for sufficiet]t]y s~llall  KV~ (CaSe (a)), NV? has two fixed
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poillls, i]r]ljlying  the cxistcl)ce of two solrrtio~w  to (9). ‘Jlc larger fixed poi~it is unstab]c. WltCn KV12 e q u a l s
tllc critical value 4/27, Lhcse two fixed points merge irito  onc ,as dcl~ictccl by Case (b). If NV:  is fur ther
irlcrcascd, N1,l~ no longer ILas a fixed poillf,,  implying the no~lcxis~cncc  of a so]utioll to (9). l’hc critical value

of KV12  ii~ Case (b) corresponds a bifurcatioil point at wl~icll truckling occurs [25]. Note that for Cmc (a),

in orrlcr for H c [0, ~ to l)c a domain of corltraction for Nv,~, d ]nrrst  bc ICSS  than the unstab]c fixed point

wllicll  tends to do as KV12 - + O. ‘1’his conclusion is also cxihbitcd by the forjli of the contractio~] constant o
givcll  ill (24) .

N o w ,  h a v i n g  colIlputcd  the z[lirror  defor[nation u =. u(x) for x E Q corrcspo~]ding  to given  actuatc,r
VO1tagCS  vj, ~ D 1 ,  .  .  . ,P,oncrnayprocecd  to express uin terl~ls  ofortllogotlal  l)olyrLor~~ials  sucll~l,egc1~dre
or Zcr~lilrc  polynolnials. ‘1’hc cocfflcicnts of the polynomial can bc cornprrtcd from tbc given values of u over
afillitcsct of pointsin  fl using standard rtncthocls  []], [22].

11. Actuator Voltages Cor~esponding  to SI]ecified  Mirror  I)efor.7rlaiiorLs at ihe Aciuatorl,ocaiions
Now, wc consider the inverse problc]n of co[n~)uting  the actuator voltages which produce aspccificd u

corresponding to the desired ~nirror  displacements at the spcciticd  locations X3, . ..x~ in Q. I1erc,  the points

xj need not ccmrespond to t}lc actuator Iocatious. Whe~l the desired mirror deformation at sljcciflcd locations
Xl, . . . ,XQ irl Q, ]Icrc, tllc points xj, j H 1, . . . ,Q, need not correspond to the actuator locatiox)s.  When the

d e s i r e d  rnirrordc forrnationud=- ud(x)is cxl)resscd irlterIlls ofasctof cocficicnts associated witl~as1jccificd
basis  {pi = pi(x), ic 1)2, ...} (i.e., u~(x)  =- ~~:dipi(x)),  wc def ine  tllc dcsircdrnirror displaccnlent vector
11~ by

(25)

I t  f o l l o w s  f r o m  (10) that u~ == ti(u~)V2, W h e r e  ~(ud) is a linear t ransformat ion  on  Rf) into R(?
rcpr-escnted by a Q x’P m a t r i x  w h o s e  i-’tb’row.is (~(x:, U~(x~)), . . ..~(Xi. Ud(x~))).

corresponds to the location of the i-th actuator, ]>(ud) reduces to 1’(Ud) as defined in
actuator voltages ~nay be obtained by

Whcl[  Q  = 1’, a n d  xi
14). Now, the required

(26)

n IF’ which Ininirnizcj

V2  :- i’+ (u~)u~,

where  ~+ (Ud) is the pscudoinversc [18] of ~’(l~d)., and V 2 corresponds to the vector
II u~ - i’(tId)v2 II. In the special c a s e  w h e r e  I’(lId) is nonsinguhir,  i’+(lld) reduces  to  the  usual i n v e r s e
of  l’(ud), In general, it is possible that SOIIIC  cor]lponcnts of V 2 o b t a i n e d  frorll  (26) arc ncgat,  ive. ‘l’his
i[i~~)lics tha t  the  des i red  ~nirror  dis~)lacc)llcrlt  Ud is Ilot  a t t a i n a b l e  by the dow~lward  e l e c t r o s t a t i c  forcc:j
p roduced  by  i,]lc actuators, ,4 trivial cxalnl)]e of all uILattai  Ilab]c  desired IIlirror surface is orlc wit}l a Cor)cavc
s}lapc.  An alternate forr~)ulatioll  to this problcm is to fil)d an element w * ill the closed bounded convex set
v = {w CRF  : w > 0 and II w l]< V2}  such tha t

J(w*) < J(w) for all w C V, (27)

W]lere J(W) ::11 Ud-i’(trd)w  [12, and V2 is a SLlfficicntly  Sma]] pOSiti Ve rlUI[nh Cr,  ‘~’]liS iS a COIIVCX  ]]rOgra[Kllrli  Il$

probleIn. lt,s IIurncrical s o l u t i o n  car,  be obtail,ecl Usil]g t}le exteI,dcd gradiellt-~,rojcction rrlctbod [1 9].

C o n s i d e r  a  c i r c u l a r  dcforrnablc  mir ror  wi th  liorxrlalizcd  spat ia l  domain  givcri by the unit disk & z

{(~, ~) :0 S ~ < 1 , 0 < 0  S ‘23}, w h e r e  7 =- r/ro, a n d  r -O  i s  the  Inirror r a d i u s .  I,et fij d e n o t e  t}lc ~,or,na]izccl
cflectivc actuator spatial domain Qj. For sl]ccificncss, wc shall usc a rncrnbralle  rrrc,del for t}le ~llirror  surface
dcforrnations.  Assun]ing that the rrLirror surface lla.s urliforr[l  thickness and tcllsioIl T, the partial differential
equation corresponding to (3) arid (8) irl cylindrical



with boundary conditio~l:

u(i) = o for  a l l  x  = (F, O) E 8tlc, (29)

where Xj R (Fj, dj ), and ~j denotes the characteristic function of fij.
Using the explicit expression for the solution of the elliptic partial differential equation (1) with boundary

co~ldition  (29) and arbitrary right-hand-side j [20], [21], (28) and (29) can be reformulated as a nonlinear
integral equation of the form

w h e r e  K == 1{1 -I 1(2, and

(KI(i, d,p, ()=- ln(~)+-~$(~n-i-” )COS(74< - O))) {u(p) - U(p - F)},
n=l

w}lcre  U denotes the unit-step furlction.  It is show~l in Appclldix  A that

(30)

(31)

(32)

(33)

(34)

Applying conditions (19) and (24) to this case, a sufficient condition for JVVZ to be a contraction mapping
on U (defined in Sec.]]) is that

r~~O(exp(- 7 /3)  -  21r,(3/5)  + 21/10){P  II V21! < ~,

22;(d~~”Jj3  ““ “ “ ”  ““ ‘-
(36)

“1’hc bourld in (35) has a rnaxir]]urn  at d =. dO/3, which is about the onset of the well-known pull-ill instability

irl structures of this type. ‘J’bus, for a d < dO/3, and any given any V  sa t i s fy ing  (35)  a~ld (36), the
corrcsl)ondirlg  mirror deformation can be computed iterative~ AM@& ~~rithm given by (1 5).

Now, we consider t},e probleln of determining the actuator voltages V corresponding to specified desired
static mirror deforrl]ation.s at the actuator locations. ]Iere, the desired mirror deformation ud :- ~d(x) is
cx~,resscd  in ter~ns  of Zeruike polynomials [22] ,[23]:

wlicre cr~s arc specified real coefficients, ancl

(M)
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‘1’l\c ful~ctions  It; arc radial polyno]l}ia]s  defined by

(39)

‘1’IIc degree of the polynolnial n aud tllc aiiinluthal  frequency nl arc positive illtegcrs satisfying 171 < n a n d
?L - nl even. ‘lihe radial polyllonlia]s  l{: are normalized sucli  that lt~’ ( 1 ) = 1. ‘1’hc index j is a mode ordering
~\ullJ>er which may trc defined in many ways. llcre, wc adopt Nell’s conve~]tion  [23] where the numbering
scquc]lcc of the index j of Zj proceeds as follows: for a given n, modes with a lower 771 are arranged first.

W h e n  m = n, the  even j tcrrns corresl,ond to thcsylnrnctric lnodcs defined by cos(md), w}lile the odd j
tcrrns cor respond to the antisyr~,rnctri crnodcsdefincd bysin(nld).

Ilva]uatingrrd  given by (37) at the actuator locatiorlsij = (Fj,  Oj) gives

Ud ‘- (f@iZi(fl,~l),.  .~@i~i(~P~P)7) (40)
i=] iz 1

‘1’hci-tb rowofthe matrix I’(ud) is given by

( r:(o

- - - - -J

,2

~)(~i,lld)  n l{(ii, i’)di’j . . ..g-–--.g-:g ----- -
~(rfo-rfd(il)y & J )

l{(ii,i’)di’  ,
2(d0- lfd(XP))2  rjc

(41)

t]lus, given  ud, thccorresponding  V2canbcdeterrnincd f rom (26) .

V, Nurncrical IIxarnp]cs
Now, wc app]y the results in Scc.tiorls  IV and V to a typical circular nlicrolnachined siiico]lmitrot with

radius  rO = 0.5 c~n and tension 1’ E 100N/m.  ‘1’}le actuators co~lsist of a center pad with radius r l = 0 . 2
CIII, a~ld eight fan-shaped actuators. ‘1’hc fan-shaped actuators are centered along circles with radii 0.3 and
0.4c~nand with anglcsseparated byz/2radiarls.  Moreover, thcyhaveur,iform  radial width of 0.09cn  land
angular aperture of 0.95fi/2 radians. 'lhesu]n oftllec}laracteris~ icfurlctior~s oftklc actuator spatial domains
is shown in F’ig.4. ‘1’hc distance dO between the urldcforrncd flat mirror surface and the bottoln.:)lane is set
at ]Op]n.  Y,xplicit  expressions for the elements of tile nlatrix I’(u) dcfinecl  in (14) for fan-shaped and center
pad actuators are given in Appendix]].

Firm, wc apply thecontraction  mapping algorithnl (15) tocolnpute themirrorde formation corresporld-
ing  to given actuator voltages V. For the foregoing parameter values, conditions (35)  and (36)  for J& to
be acontraction mapping  aregivcn explicitlyt)y

II V llz~ 0.56144~(10  -- J)z, II V2 11< 0 .09357(10  - J)3, (42)

where J is given in microns, Evidently, for this case, (42) represents a conservative cotldition. l’his is
duc to the fact that the size of t}lc actuator spatial dorllains is not takerl into account irl the derivation of
(35)  and  (36) .  Actua l  co[nputational  expericncerevca]cd that co]ivergence  ofalgorithrn (15) is attainat.,]e
for t[luch  larger values of II V Il. Figure 5 s}~ows a  typical  ac tuator  vol tage  pat tern  corresponding to
V= (5,10,5, 35,10,10,5,35,10)7’ volts whic]l  docs  not satisfy (42). q’henorrn  of thediffcrencc oft}ic mirror
deforrllation  u between two successive iterations as a function ofitcration number is shown in Fig.6. l’he
initial guess for the mirror deformation is given  by u(fi, O) = (1 -- ;2) pm. Figure 7a shows the computed
mirror  dcfor~nation. The radial profiles at O =- T/4 a[ld  n/2 radians, and the level curves of the corl~~uted
n]irror cleforinatiorl  are shown in Figure 7tr and 7C respectively. Next, we reduce the actuator gap do to 6
Inicrons while maintaining the sanle V, Figure 6 shows the norm of the difference of t}le mirror dcforrilation
u betww.m  two successive iterations rM a furlctio]l  of iteration llutllber starting with the flat mirror a-s the

irlitial guess. here, weobservc anoscillatory behavior ofthc iterated solution sequcncc  indicating that the
initial guess is outside the do~nairl  of contraction,

N o w ,  let the desired mirror dcfornlation ~d be specified by Zernike coefficients al = 2.45<npnt,  a4 =
- 1.4435~xpm,  a n d  all z 0.0225  ~n”iLm.  ?Shus

8



lf~(~, O) = (2.45  Z1(F)  - 1.4435X4(F) + 0.0225  Z]l(; ))fi

= (2.45 – 1.4435  {3(2;2 - 1) -I 0.0225  {5(6F4 -- 6fi2 + 1)) pm. (43)

“1’hc above ud satisfies the boundary  cond i t i on  Ud(],d) =- O. ]~igurc  9 shows t}lc ]CVC] curves and surfaccof
Lhc des i red  IIlirror dcformatioxl. Eva]rrating Ud at the ccntcr-pad radia l  poin t  rl/2 = 0.1 cm,  and a t  the
rc~naining actuator locations gives u = (8.488, 5.549,  3. 068,5.549,  3. 068,5.549,  3. 068,5.549,  3. 068)T'/f  III. The
corrcsl)ol~ding P(u) is given by

P(u)  =

0 . 5 0 0 2  0 . 0 0 5 3  0.0013  0 . 0 0 9 2  0 . 0 0 2 2  0 . 0 0 9 2  0 . 0 0 2 2  0 . 0 0 5 3  0 . 0 0 1 3
0 .1979  0 .0183  0 .0047  0 .0036  0 .0009  0 .0019  0 .0005  0 .0036  0 .0009
0 .0864  0 .0087  0 .0052  0 .0017  0 .0004  0 .0008  0 .0002  0 .0017  0 .0004
0 .1979  0 .0036  0 .0009  0 .0183  0 .0047  0 .0036  0 .0009  0 .0019  0 .0005
0 .0864  0 .0017  0 .0004  0 .0087  0 .0052  0 .0017  0 .0004  0 .0008  0 .0002
0 . 1 9 7 9  0 . 0 0 1 9  %.0005  0 .0036  0 .0009  0 .0183  0 .0047  0 .0036  0 .0009
0 .0864  0 .0008  0 .0002  0 .0017  0 .0004  0 .0087  0 .0052  0 .0017  0 .0004
0 .1979  0 .0036  0 .0009  0 .0019  0 .0005  0 .0036  0 .0009  0 .0183  0 .0047
0 .0864  0 .0017  0 .0004  0 .0008  0 .0002  0 .0017  0 .0004  0 .0087  0 .0052

x 10.-”7 (44)

which is nonsingular. The corresponding actuator voltages which produce the desired u arc given byV 2 =
P(u)  -luor V~ (9.6254,3 0.1328,41.7857,3  0.1328,41  .7~57,30.1  328, l.7857,30.1328,4  l,7857)T  volts. Figure
10a shows the actual and desired mirror deformations along a radial line at a~i angle of m/4 radians. l’}leir
differe~~ce is shown in Fig.10b.  It ca~i be seen that the actual mirrc,r deformations at the actuator radial
poillt,s  0.1,0.3, and 0.4 c~n match exactly with the desired values as expected. ‘l’he level  curves and surface
of the deformed mirror corresponding to the computed V are s}lown in I’ig.11.

VI. Co~lcl~](ii]lgIicrnarl~s
Recently, precision micromachined silicon mirrors with electrostatic actuators were successfully fabri-

cated and tested at the Jet Propulsion ~aboratory [] 1]. ‘1’he experilnent,al results were in close agreement
with the colnputational results using the me~nbranernodels  with nonlinear actuator characteristics dcscribcd
h e r e .  'I'lledetails will  bcrel,orted intl,erlear fut~Jre  [24].

in contrast withfinite-element methods which involve spatial discretization resultingin alargenurnher
of rlolllirlear algebraic equations to be solved, the computational methods presented here dc) not require
SUC1]  discretization.  OIlce  the mirror deformations at t~lc actuator 10 CatiO[lS corresponding to given actuator
vol tages  are  conlputed, t}ie IIlirror deformation at any point can be cotn{)uted  as accurately as desired.
hloreover, the number of nonlinear algebraic equations to be solved is equal to the nund~er  of actuator
electrodes. Finally, the methods presented liere IIlay alsc~ be applicable to large deformable rilirrors with
actuator forces whlcll are describable by noulinear algebraic functions of the local mirror deformations.
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Appendix A
Consiclcr Lbe iutegral

2X 1

JJ
I((F,O,p,()~j(~,[)~d~d<  = I I ( ; ) +  12(;10) + 13(F) +“ 14( F, U), (A.])

0 0

wllcrc

/

271

J

f
II(F) = df(- lJJ(F)) Jj(P, t)P~P, (A,2)

o 0

(A.3)

2X

//

1
13(F)  == - d< lll(fl)dj (PI <)PdP, (A.4)

o f

= T(I -- F2)/2 ~ 7i/2  for allfi  C [0, 1].

‘~’bc  SUIJI  of tbe iut,egrals 12 aud 1 4 cau  be  bounded  by

g,(;) = - F(: + w)), ~= (F2 -  7=”)
gz(;) = 2 > 2 -

~=3 (,12 --’ij-’

Using (A.7) aud the fact that

(A.5)

(A.6)

(A.7)

(A.8)

nlax g~(i) =  g~(exp(--7/G)) =-  ~ exp--7/3),
0<?<1

1



nlax (F -- in) =-
0<;<1 (::)2’(’’-2)(:-; 2 ,

Wc llavc

(A .9)

I ‘ 2 ( F ! 0 , + ‘ 4 ( F , U ) I S 2 T ( ’ 3  ~ ‘X1)(-  7/ 3 ) +  ~ ~-(71~-2j  (~) ’’(’’”))  fO~ all(i, d) ~ fi~.

Since  (2/n)21[’’-2J < 1 for all n ~ 3, thus

wllcrc p(n) :– l/(n(n -1- 2)). Using the fact that

~ 2P(n) S lim  2p(n)  -1 2 P ( 3 ) +  m 2p(z)dz =n-m*=3 I3

we obtain the following estimate

I ~z(~,fl) i  l~(F,O)  IS&+ exp(-7/3)  -  2hI(3/5))

Combin ing  (A.6) and (A.13) leads directly to the dcsirccl  estinlatc (34)

A~~~cljdix 11

i: -- ln(3/5),

for all (;, f?) ~ flc

(A.10)

(A.]])

(A.12).

(A.13)

For a center pad with normalized radius FI , we partition t}~c normalized mirror dolnain flC into two

and for (F, O) E fiP2:

(B.])

where ~(ij) corresponds to the mirror dis~lacemcnt at the circle with radius F = ;l /2, and

(11.3)

(11.4)



.2 .

wllcrc ?; =. Fj + AFj/2,  FIT Z. Fj – A?j/2, Oj: z Oj - -  AOj/2, O: =- Oj + AOj/2; arid  wlierc  Afj a n d  A Oj a r c
tlic norlnalizcd radial width and tlic angular aperture of the fan-sl)al,cd  actuator e]cctrodc esl,cctivcly.

lot (F, O) G fijl:

‘-F --;!-j((~;  )~+ 2 _. ;- k( j ) “2)[sin(k(O~ -O) -- sin(k(OJ~ -- O))]
k=l

m j+
. . . - . - ( ( f .  y-k _ ;, 2+- ~ q2-_ ~, ( ,) ‘-k)[sin(k(O~  - O) - sin(k(Oj~  - O ) ) ]

k=l, k#2

m i’
+ ~ ~2---–.( (~k_j2kkj 2-k

- ( 2 - k )  ~
)[sin(k(O~  -- O)) - sin(k(O, - 0))]

k= l,k#2

+-$ lI,(fi~/F)[sin(2(O~ -- O)) -- sin(2(O; - 0))]};

for (i,0)c~lj3:

(1;.5)

(B.6)

3

(B.8)



1+’IGIJRE CAl”’rl’loNS:
lip; .] Skct,clL  of a circular microi[lachincd  dcfor~rlat)le  rnir-ror  iu tllc for]ll  of a thili elastic sutfacc with clcc-
tros Latic actuators.

l’ig.2  ‘1’ypical actuator patches for rectangular and circular mirrors.

l’ig.3  Graphs of JUv~ for the siuglc actuator case wit]]  various values of KV/

l:ig.4 Srrm of the characteristic frructious of the actuator spatial doInains  for a Inirror with a ceutcr pad aud
cigllt fan-shaped actuator electrodes (A* == Ay = rO/30).

1’ig.5 Actuator voltage pattern corrcsl)onding  to V = (5, 10,5,35,10, 10,5,35, 10)7’ volts (Ax = Ay =. rO/30).

l~ig.6 Norln of the diflcrencc of the mirror dcformatiou u hctwecn two successive iterations ass a function of
iteration uuIntrcr.

l“ig.7  (a) Co~oputcd  mirror deformation; (b) radial profiles at O = 7r/4 (solid curve) aud 7r/2 radiaris (dashed
curve); (c) level contours of t}lc computed mirror dcforr[lation.

l’ig.S  Norln c)f the difl’ercucc  of the mirror dcfor~rlatiou  u bctwccn two successive iterations as a fuuctiou of
itcratiorl nu]l)bcr starting with the flat mirror as the irlitial grrcss;  do =- 6 n~icrous,

l’ig.9  I,CVC1  contours and surface of the desired mirror deformation given by I;q.  (43) (Az == Ay =- rO/30).

P’ig.l O (a) Cornputcd aud desired mirror dcformatious  aloug a radial line at an angle of 7r/4 radiaus cor-
rcspondiug to  V = (9.6254,30.1328, 41.7857,30 .1328,41.7857,30.1328,41.7857, 30.1328,41.7857) 7’ volts; (}~)
l)ifi’crcr,ce  bctwccn the  des i red  and computed  mir ror  dcformatiorls along a radial liuc  at an ang,lc of 7r/4
radialis shown in (a).

Fig.]] I,cvcl contours ar)d surface of the corl~puted  ~uirror  dcforlnation cc)rrcsporlding  to V given iu l’ig.10(a).
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COMPUTED MIRROR DEFORMATION
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DESIRED & COMPUTED RADIAL PROFILES OF MIRROR; O = Tr/4
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DIFFERENCE: DESIRED & COMPUTED RADIAL
PROFILES; El = lT/4o. ‘ .
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LEVEL CONTOURS OF COMPUTED MIRROR DEFORMA7-ION
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